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CHAPTER FOUR

__________________________________________________________________________________

Electronic Structures of

Molecules and Solids

4.1 Introduction

Solid state materials are often classified according to how their electrical resistivity r varies as a
function of temperature T.  Metals and semiconductors have positive and negative slopes in their ρ-
versus-T plots, respectively (Figures 4.1a and 4.1b).   For some compounds,  metallic states are  stable

Figure 4.1.  Schematic resistivity-versus-temperature plots for (a) a
metal, (b) a semiconductor, (c) a metal undergoing a metal-to-
semiconductor phase transition, and (d) a metal undergoing a metal-to-
superconductor phase transition.
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only in a  certain  region of temperature so that a metal may become a semiconductor (Figure 4.1c) or a
superconductor  (Figure 4.1d)  when the temperature is  lowered. In understanding such a phase
transition of solid-state materials, it is crucial to know their electronic structures.

The electronic structure of a molecule is characterized by discrete energy levels (Figure 4.2a),
and that of a solid by energy bands (Figure 4.2b).  As illustrated in Figure 4.2c, any given energy band
consists of N discrete levels, where N is the total number of unit cells in a solid. For all practical
purposes, all energy levels falling within a band are allowed because N →∝.  In a one-electron picture
of electronic structure, each band level is filled with two electrons.  At T = 0 K a normal semiconductor
contains only completely filled and completely empty bands (Figure 4.2d), so an energy gap (i.e., band
gap Eg) exists between the highest occupied and the lowest unoccupied band levels.  A normal
insulator has a band gap larger than 2 eV.  A normal metal has at least one partially filled band (Figure
4.2e), so there is no energy gap between the highest occupied level (i.e., the Fermi level ef) and the
lowest unoccupied level.

Figure 4.2.  (a) Discrete energy levels of a molecule.  (b) Energy bands
of a solid.  (c) Schematic view of an energy band in terms of closely-
spaced discrete energy levels.  (d) Band occupancy expected for a
normal semiconductor.  (e) Band occupancy expected for a normal
metal.

The above discussion is based on one-electron theory, which neglects electron localization

resulting from electron-electron repulsion, electron-phonon interaction or random potentials.1

Magnetic insulators possess unpaired energy levels.  Within a one-electron picture, these systems also
possess partially filled bands.  However, the way the band levels are filled in magnetic insulators is

different from that in normal metals (see Section 4.6.1 for further discussion).2  Therefore, when a
solid system is predicted to be metallic by one-electron electronic band structure calculations, it is
extremely important to recall that such a system may not be a metal but a magnetic insulator.  The
metallic versus magnetic insulating state of a solid is similar in nature to the low-spin versus high-spin

state of a molecule.2

4.2 Electronic structures of molecules

4.2.1 Molecular orbital theory
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In molecular orbital (MO) theory, the electronic structure of a molecule is described by
molecular orbitals ψi (i = 1, 2, ..., m) that are expressed as a linear combination of atomic orbitals χµ
(µ = 1, 2, ..., m),

ψi = 
µ
∑ Cµi χµ (4.1)

where Cµi is the coefficient of the atomic orbital χµ.  The energies ei of the MO’s ψi are eigenvalues
associated with the effective Hamiltonian Heff

Heff ψi = ei ψi (4.2)

so that ei is written as

ei = 
ψ ψ

ψ ψ
i

eff
i

i i

H
(4.3)

The energy ei is optimum with respect to changes in the coefficients Cκi so that

∂
∂ κ

e
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i

i
= (κ = 1, 2, ..., m) (4.4)

which leads to the m x m secular determinant
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where the matrix elements Hµν and Sµν are expressed as

Hµν = <χµ|Heff|χν> (4.6)

Sµν = <χµ|χν> (4.7)

The matrix elements Hµν, Sµν and Cµi (µ, ν, i = 1, 2, ..., m) form m x m matrices H, S and C,
respectively.  These matrices are related by the pseudo-eigenvalue equation,

HC = SCe (4.8)

where e is an m x m diagonal matrix with its diagonal elements given by ei (i = 1, ..., m).  Thus if the
matrices H and S are determined, then the coefficient matrix C and orbital energies e are obtained by
solving the pseudo-eigenvalue problem, Eq. 4.8.  If the overlap matrix S is approximated by the unit
matrix 1, then Eq. 4.8 is simplified as

HC = Ce (4.9)
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4.2.2 Population analysis

Each MO ψi can be occupied by ni electrons (ni = 2, 1 or 0) so that the total number of
electrons Nelec of a molecule is written as

Nelec = 
i

∑ ni ψ i ψ i (4.10)

because each MO is normalized to unity, i.e., ψ i ψ i  = 1.  This leads to the Mulliken population

analysis, which partitions the Nelec electrons of a molecule into its atoms and bonds.  The net

population pµµ of an atomic orbital χµ is defined by

pµµ = ni
i

∑ Cµi( )2
, (4.11)

the overlap population pµν between atomic orbitals χµ and χν by

pµν = 2 ni
i

∑ CµiCνiSµν , (4.12)

and the gross population qµ of an atomic orbital χµ by

qµ = pµµ + 0.5
ν ≠ µ( )
∑ pµν (4.13)

Thus the gross population QA of atom A (i.e., the number of electrons on A) is given by

QA = 
µ ∈A
∑ qµ (4.14)

so that the net charge on atom A is ZA - QA, where ZA is the effective nuclear charge of A (i.e., the
nuclear charge minus the number of the core electrons).  The overlap population PAB between atoms A
and B (i.e., the number of electrons in the bond A-B) is given by

PAB = 
µ ∈A
∑

ν∈ B
∑ pµν (4.15)

4.2.3 Fragment molecular orbital analysis 3

It is often convenient to consider a molecule in terms of its fragments (e.g., ethane CH3CH3 in
terms of two methyl groups CH3).  In MO theory this amounts to expressing the MO’s of a molecule
AB in terms of the MO’s of its fragments A and B, i.e., in terms of the fragment molecular orbitals
(FMO’s).  For convenience of discussion, consider that the set of atomic orbitals {χ1, χ2, ..., χn, χn+1,

χn+2, ..., cm) describing the molecule AB are arranged such that

χ1, χ2, ..., χn ∈ A

χn+1, χn+2, ..., χm ∈ B (4.16)
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Then the H and S matrices are partitioned as follows:

H = 
HA HAB

HBA HB

 
  

 
  

S = 
SA SAB

SBA SB

 
  

 
  (4.17)

where the elements of the submatrices are defined as

(HA)ij = χi H eff χ j χi, χj ∈ A

(HB)ij = χi H eff χ j χi, χj ∈ B

(HAB)ij = (HBA)ji = χi H eff χ j χi ∈ A, χj ∈ B

(SA)ij = χ i χj χi, χj ∈ A

(SB)ij = χ i χj χi, χj ∈ B

(SAB)ij = (SBA)ji = χ i χj χi ∈ A, χj ∈ B (4.18)

The MO’s of the fragments A and B are obtained by the pseudo-eigenvalue equations

HA CA = SA CA eA

HB CB = SB CB eB (4.19)

To combine these two equations, we introduce the following matrices:

H° = 

  

H A 0

0 H B

 
  

 
  

S° = 

  

SA 0

0 SB

 
  

 
  

C° = 

  

C A 0

0 CB

 
  

 
  

e° = 

  

eA 0

0 e B

 
  

 
  (4.20)

These matrices satisfy the following pseudo-eigenvalue equation

H°C° = S°C°e°, (4.21)
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which is equivalent to Eq. 4.19.  Thus the FMO’s ψ i
0
 can be re-written as

ψ i
0

 = Cµi
0

µ
∑ χµ (4.22)

The FMO ψ i
0

 belongs to fragment A if 1 ≤ i ≤ n, and to fragment B if n+1 ≤ i ≤ m.

The MO’s ψi of a molecule is expressed in terms of its FMO’s as

ψi = Tji
j

∑ ψ j
0

(4.23)

where Tji is the coefficient for the FMO ψ j
0

 in the MO ψi.  The Tji coefficients form the m x m

matrix T.  This matrix relates the C and C° matrices as

C = C°T (4.24)

and is given by

T = (C°)†S°C (4.25)

The overlap 
~
Sij  and the interaction energy 

~
Hij  between the FMO ψ i

0
 of fragment A and the FMO

ψ j
0
 of fragment B are given by

~
Sij  = ψ i

0 ψ j
0

 = (C i
0 )†S  C j

0

~
Hij  = ψ i

0 H eff ψ j
0

 = (  C i
0
)†H  C j

0
 (4.26)

where   C j
0
 is the column vector made up of the MO coefficients Cµj, and (  C i

0
)† is the row vector

made up of the MO coefficients Cµi.

4.2.4 Density of states

Electronic structure of simple molecular systems are easy to describe in terms of the nodal
properties and energies of their MO’s. For large, complex molecular systems this approach is
intractable and hence useless.  To discuss the electronic structures of such systems it is convenient to
use the concepts of density of states (DOS), projected DOS (PDOS), and “density of overlap

populations” (DOP) in analogy with electronic band structure description for solids.4,5

The DOS, n(e), refers to the number of the energy levels lying between e and e + de, where de is
a small positive number.  That is, n(e) is the probability of the energy level at e.  The MO levels
allowed for any molecular system are discrete so that its DOS curve, i.e., the n(e)-vs.-e plot, is difficult
to visualize.  To overcome this difficulty, each discrete MO level may be replaced with a Gaussian
function centered at the energy level.  For example, consider an MO level ei with the probability of
occurrence pi (= 1 for each nondegenerate MO level) (Figure 4.3a).  This discrete level at ei may be

replaced by the Gaussian function gi(e) centered at ei as shown in Figure 4.3b, so that
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gi(e) = 
1

p exp
e e

i
i

2

πδ δ
−

−



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



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
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

(4.27)

where δ is the smoothing parameter.  The function gi(e) becomes flatter with increasing δ, and
satisfies the normalization condition

− ∞

∞

∫ gi(e)de = pi (4.28)

Figure 4.3.  (a) Discrete energy level ei with probability pi.  (b)
Representation of the discrete level in terms of the Gaussian function
gi(e).

The DOS, n(e), at any given energy e is then obtained by summing contributions from the
Gaussian functions gi(e) for all the MO levels i = 1, 2, ···, m,

n(e) = 
i 1=
∑
m

2gi(e) (4.29)

where the factor of 2 is introduced because each level can be occupied by two electrons.  In other
words, we neglect high-spin states, for which some levels are singly filled (see Section 4.6.1).  

Suppose that we calculate the gross population qµ(ei) of an atomic orbital χµ for each
individual MO level ei alone assuming that it is doubly occupied.  Then the DOS-weighted gross

population, qµ(e), of the orbital χµ is given as

qµ(e) = 
  i
∑ gi(e)qµ(ei) (4.30)

Then qµ(e) represents the PDOS of the atom orbital χµ.  The PDOS, QA(e), of an atom A is given by

QA(e) = 

  
χµ ∈A
∑ qµ(e), (4.31)

which satisfies the normalization condition
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n(e) = 

  all A
∑ QA(e) (4.32)

The gross population QA of atom A is then written as

QA = 

  − ∞

ef

∫ QA(e)de, (4.33)

where ef refers to the HOMO level.

In a similar manner, the overlap population pµν(ei) between two atomic orbitals χµ and χν
can be calculated for each individual MO level ei alone assuming that it is doubly occupied.  Then the

DOS-weighted overlap population pµν(e) between orbitals χµ and χν is given by

pµν(e) = 
  i
∑ gi(e)pµν(ei), (4.34)

which represents the DOP between orbitals χµ and χν.  The DOP, pAB(e), between atoms A and B is

given by

pAB(e) = 

  
χ

µ
∈A

∑
  
χ

ν
∈A

∑ pµν(e) (4.35)

and the overlap population PAB between atoms A and B is written as

PAB = 

  − ∞

ef

∫ pAB(e)de (4.36)

Electronic structures of molecules can be discussed solely on the basis of their DOS and or DOP
values.  This approach totally neglects the information about the nodal properties of MO’s.  However,
consequences of orbital interactions leading to calculated MO levels can be easily deciphered by
constructing appropriate DOS, PDOS and DOP plots.

4.3 EHTB calculations 6

The crucial difference between first principles and semi-empirical methods of electronic
structure calculations lies in the way of constructing the H matrix of the pseudo-eigenvalue equation
Eqs. 4.8.  Once a set of basis atomic orbitals is chosen for a system under consideration, first principles
methods construct the H matrix using the Hamiltonian appropriate for the system and refine it in a self
consistent field manner.  In semi-empirical methods, the construction of H is carried out empirically by
introducing a number of simplifying approximations.

In the EHTB method,6 only valence electrons are considered, and valence atomic orbitals are
approximated by Slater type orbitals (STO's) χµ.  Single-zeta STO's are defined by

χµ(r,θ,φ) ∝ rn-1 exp(-ζr) Y(θ,φ) (4.37)

where n is the principal quantum number, ζ is the exponent, and Y(θ, φ) is the spherical harmonics.
In double-zeta STO's, a linear combination of two exponential functions is used as
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χµ(r,θ,φ) ∝

rn-1 [c1 exp(-ζ1r) + c2 exp(-ζ2r)] Y(θ,φ) (4.38)

The values of ζ for single-zeta STO’s, and those of ζ1, ζ2, c1 and c2 for double-zeta STO’s,

can be taken from results of atomic electronic structure calculations using the Hartree-Fock method.7

These calculations do not provide information about unoccupied valence atomic orbital(s) of an atom
(e.g., 2p orbital of Li, 4p orbitals of Ti, etc.).

In the EHTB method the exact mathematical forms of the effective Hamiltonian Heff is not

specified.  Instead, the matrix representation of Heff is empirically constructed.  The diagonal element

Hµµ = <χµ|Heff|χµ> (µ = 1, 2, ..., m) is approximated by the valence-state ionization potential

(VSIP),8,9

Hµµ = -VSIP (4.39)

The VSIP values of valence atomic orbitals can be approximated by their orbital energies from suitable

atomic electronic structure calculations.7

The off-diagonal matrix element between orbitals χµ and χν, i.e., Hµν = <χµ|Heff|χν>, is

approximated by the Wolfsberg-Helmholz formula,8

Hµν = KSµν(Hµµ + Hνν)/2 (4.40)

where Sµν is the overlap integral between χµ and χν, Sµν = <χµ|χν>, K is a constant (i.e., 1.75), and

Hµµ and Hνν are the VSIP’s of the orbitals χµ and χν, respectively.  In the weighted Wolfsberg-

Helmholz approximation,10 the constant K is replaced with another constant K’

K’ = K + ∆2 + ∆4(1 - K) (4.41)

where ∆ = (Hµµ - Hνν)/(Hµµ + Hνν).  The weighted Wolfsberg-Helmholz formula reduces the extent
of the so-called counterintuitive orbital mixing that occurs when a very contracted orbital interact with

a very diffuse orbital.10

The EHTB method solves Eq. 4.8 for molecules using the matrix elements defined as above.
The simple Hückel method solves Eq. 4.9.  The ζ and Hµµ values of the STO's to be used in

constructing the H and S matrices are stored in the data base of the CAESAR program package (see
Section 5.2.2 for details).

4.4 Electronic structures of solids 9,10

4.4.1 Bloch orbitals

Consider a 3D orthorhombic lattice with repeat distances a, b and c along the crystallographic a-
, b- and c-direction, respectively, as shown in Figure 4.4a.  Each unit cell has a set of atomic orbitals

{ χ1, χ2, ..., χm}.  An atomic orbital χµ (µ = 1, 2, ..., m) in the unit cell located at the site (ma, nb, pc)

is written as χµ(r-ma-nb-pc), where m, n and p are integers.  To determine the electronic energy bands

arising from such atomic orbitals, one first defines the Bloch orbitals φµ for each atomic orbital χµ
as
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φµ(ka,kb,kc) =

N−1/ 2 exp( ika
n
∑ ma) exp(ikbnb)exp(ikc pc)χµ(r-ma-nb-pc) (4.42)

Figure 4.4.  (a) Schematic representation of the direct lattice sites
generated by the repeat vectors a, b and c.  (b) Schematic diagram of
the FPZ, where G = (0, 0, 0), X = (1/2, 0, 0), Y = (0, 1/2, 0), and Z =
(0, 0, 1/2).

Here the three wave vectors ka, kb and kc are used to describe all possible phase relationships between
the atomic orbitals located at different unit cells along the a-, b- and c- directions, respectively.  Due to
the periodic nature of the coefficients exp(ikama), exp(ikbnb) and exp(ikcpc), one can use only the
wave vectors (ka, kb, kc) lying in the following region

-π/a ≤ ka ≤ π/a

-π/b ≤ kb ≤ π/b  (4.43)

-π/c ≤ kc ≤ π/c

in constructing the Bloch orbitals.  These wave vectors define the first primitive zone (FPZ) shown in
Figure 4.4b, where Γ = (0, 0, 0), X = (π/a, 0, 0), Y = (0, π/b, 0) and Z = (0, 0, π/c).

4.4.2 First primitive zone

In describing electronic band structures of general 3D solids, the concepts of the direct and
reciprocal lattices are employed.  For a 3D lattice with repeat vectors a, b and c, the positions of lattice
sites (ma, nb, pc) are represented as vectors R,

R = ma + nb + pc (4.44)

A set of these vectors is called the direct lattice.  The reciprocal lattice of a given direct lattice is

defined as a set of vectors K satisfying the relationship, exp (K.R) = l.  The vectors K are expressed
as

K = ma* + nb* + pc* (4.45)

where a*, b* and c* are the reciprocal vectors associated with the vectors a, b and c as follows:
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a* = 2π
  

b × c

V

b* = 2π
  

c × a

V
(4.46)

c* = 2π
  

a × b

V

where V is the volume of the unit cell defined by the repeat vectors a, b and c (i.e., V = a×b·c).  Thus,
for the orthorhombic lattice, the lengths of a*, b* and c* are given by 2π/a, 2π/b and 2π/c,
respectively, and their directions are along a, b and c, respectively.

It is convenient to express a general position, k, of the reciprocal space in units of the reciprocal
vectors, that is,

k = xa* + yb* + zc* (4.47)

where x, y  and z  are dimensionless numbers.  For any general 3D lattice, the term exp(ik.R) can be
written as

exp(ik.R) = exp(ikama) exp(ikbnb) exp(ikcpc) (4.48)

where ka = x(2π/a), kb = y(2π/b) and kc = z(2π/c).  Therefore, the wave vectors (ka, kb, kc) introduced
to construct the Bloch orbitals of a 3D orthorhombic lattice are also valid for any other non-
orthorhombic lattice.

For simplicity, the wave vector k = (xa*, yb*, zc*) is often represented by (x, y, z).  With this
notation, the special points of the FPZ in Figure 4.4b is given by Γ = (0, 0, 0), X = (0.5, 0, 0), Y = (0,
0.5, 0) and Z = (0, 0, 0.5).  Likewise, the FPZ of the reciprocal space is defined by

-0.5 ≤ x ≤ 0.5
-0.5 ≤ y ≤ 0.5 (4.49)
-0.5 ≤ z ≤ 0.5

The first Brillouin zone (FBZ) is defined as the Wigner-Seitz cell of a reciprocal space.  For an
orthorhombic lattice, the FPZ is identical with the FBZ.  This is not necessarily the case for other
lattices.  One can use wave vectors of either FPZ or FBZ in constructing electronic band structures.

4.4.3 Crystal orbitals

Our notations for Bloch orbitals and their related expressions are considerably simplified by

using the symbols k and R.  An atomic orbital χµ located at R is given by χµ(r-R) (µ = 1, 2, ..., m),

so the Bloch orbital φµ is written as

φµ(k) = 

  

N−1/2

R
∑ exp(ik.R)χµ(r-R) (4.50)

The crystal orbitals ψi are given as linear combinations of the Bloch orbitals φµ
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ψi(k) = 
µ
∑ Cµi(k)φµ(k) (4.51)

and their energies ei(k) are eigenvalues associated with the effective Hamiltonian Heff

Heff ψi(k) = ei(k) ψi(k) (4.52)

so the energy ei(k) is written as

ei(k) = 
ψ ψ

ψ ψ
i

eff
i

i i

( )H ( )

( ) ( )

k k

k k
(4.53)

The energy ei(k) is optimum with respect to changes in coefficients Cκi(k), i.e.,

    

∂ei(k)
∂Cκi(k)

= 0 (κ = 1, 2, ..., m) (4.54)

which leads to the m x m secular determinant

    

H11(k) − ei(k)S11(k) H12(k) − ei(k)S12(k) • • H1m(k) − ei(k)S1m(k)

H21(k) − ei(k)S21(k) H22(k) − ei(k)S22(k) • • H2m(k) − ei(k)S2m(k)

• • • • •
• • • • •

Hm1(k) − ei(k)Sm1(k) Hm2(k) − ei(k)Sm2(k) • • Hmm(k) − ei(k)Smm(k)

= 0

(4.55)

where the matrix elements Hµν(k) and Sµν(k) are expressed as

Hµν(k) = <φµ(k)|Heff|φν(k)> = <χµ(r)|Heff|χν(r)>

+ {exp(-i ) ( )H ( )effk R
R

r R r⋅ −∑ χ χµ ν

+ }exp ( )H ( )eff( )ik R r r R⋅ −χ χµ ν (4.56)

Sµν(k) = <φµ(k)|φν(k)> = <χµ(r)|χν(r)>

+ {exp(-i ) ( ) ( )k R
R

r R r⋅ −∑ χ χµ ν

+ }exp ( ) ( )( )ik R r r R⋅ −χ χµ ν (4.57)
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The summations of Eqs. 4.56 and 4.57 are known as lattice sums.  The summations start from
the reference unit cell at R = 0 and go over the neighboring unit cells located at R (≠ 0).  The matrix

elements 
    

χµ(r) Heff χ ν(r − R)  and 
    

χµ(r) χν(r − R)  become smaller with

increasing the distance between the reference and the neighbor cells.  Eventually, they become
negligible beyond a certain value R0 = naa + nbb + ncc, where na, nb and nc are the n-th nearest
neighbors along the a- b- and c-directions, respectively.  Thus the lattice sums can be truncated by
dropping terms associated with the unit cells beyond R0.

For a unit cell containing m atomic orbitals {χ1, χ2, ..., χm}, the matrix elements Hµν(k),

Sµν(k) and Cµi(k) (µ, ν, i = 1, 2, ..., m) form m x m matrices H(k), S(k) and C(k), respectively.
These matrices are related by the pseudo-eigenvalue equation,

H(k) C(k) = S(k) C(k) e(k) (4.58)

where e(k) is an m x m diagonal matrix with its diagonal elements given by ei(k) (i = 1, ..., m).  Thus
if the matrices H(k) and S(k) are determined, then the crystal orbitals C(k) and orbital energies e(k) are
found by solving the pseudo-eigenvalue problem, Eq. 4.58.  If the overlap matrix S(k) is approximated
by the unit matrix 1, then Eq. 4.58 is simplified as

H(k) C(k) = C(k) e(k) (4.59)

4.5 Describing electronic structures of solids

4.5.1 Dispersion relations

A study of the electronic band structure of a given solid requires solving Eq. 4.58 for a set of k-
points.  To obtain a dispersion relation for a band ψi(k) along a specific line segment of the FPZ, one
needs to calculate its energy ei(k) at a number of k-points covering that direction.  This is illustrated in
Figure 4.5a for a band of a 1D system, where the circles refer to the calculated energies at chosen k-
values.  The dispersion relation is then obtained by connecting those calculated energy values (solid
line in Figure 4.5a).  Typically dispersion relations are plotted along the boundaries of the FPZ.  For
the FPZ of a 3D lattice, the special points of interest are

Γ = (0, 0, 0)
X = (0.5, 0, 0)
Y = (0, 0.5, 0)
Z = (0, 0, 0.5)
XY = (0.5, 0.5, 0) (4.60)
XZ = (0.5, 0, 0.5)
YZ = (0, 0.5, 0.5)
XYZ = (0.5, 0.5, 0.5)

and dispersion relations can be drawn between any two points.  For the purpose of labeling in
dispersion plots, simpler labels are needed for the XY, XZ, YZ and XYZ points.  In this book and the
CAESAR package, the following notations are adopted: M = XY, N = XZ, L = YZ, and R = XYZ.

A complicated situation arises when two bands overlap in energy as shown in Figure 4.5b.  If
the symmetries of the two band levels differ at all k-points along Γ→X, the two band dispersion
curves cross as indicated in Figure 4.5b.  However, if the two bands have an identical symmetry along
Γ→X, crossing of the dispersion curves is not possible so that there result in two narrower bands as
illustrated in Figure 4.5c.  To determine which is correct, one may either analyze the symmetry of the
crystal orbitals describing the two bands or calculate the ei(k) values for a fine mesh of k-points in the
vicinity of the crossing (or intended crossing) point.  Even when band dispersions cross as in Figure
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4.5b, it is important to notice the meaning of an energy band from the viewpoint of energy surface as a
function of wave vector; the lower energy surface (i.e., that lying below the crossing point) of Figure
4.5b is one band, and the upper surface (i.e., that lying above the crossing point) is another.  This
classification is important in understanding Fermi surfaces of partially filled bands (see later).

Figure 4.5.  Determination of band dispersion relations along the line
segment G-X for the cases of (a) one band, (b) two bands with crossing,
(c) two bands with avoided crossing.

4.5.2 Fermi level and k-point sets

Figure 4.6.  FPZ of a square lattice.  (a) One whole FPZ.  A set of wave
vectors lying in the shaded triangle can be used to sample the wave
vectors of the whole FPZ.  (b) Uniform distribution of k-points
excluding the borders of the FPZ.  (c) Uniform distribution of k-points
including the borders of the FPZ.

We now discuss how the Fermi level (here used to mean the highest occupied energy level) can
be determined by considering a 2D square lattice, for which the FPZ is a square in reciprocal space.  To
know the dependence of ei(k) and ψi(k) on the wave vectors k of the FPZ, it is necessary to calculate
them for a set of k-points evenly distributed in the FPZ.  Because of the symmetry ei(k) = ei(-k), it is
sufficient to use a set of k-points covering half the FPZ.  Depending on the symmetry of the FPZ, a set
of k-points can be chosen from a smaller part of half the FPZ.  For example, in Figure 4.6a, only the
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wave vectors in the shaded triangle are necessary to consider.  To examine the ei(k)-versus-k

relationship for the k values of the shaded triangle, a set of L points {k1, k2,..., kL} may be evenly
distributed to cover the shaded triangle.  For example, Figures 4.6b and 4.6c show two ways of
distributing a set of 10 k-points.  The k-points avoid the boundary lines in Figure 4.6b, while this is not
the case in Figure 4.6c.  In a set of evenly distributed k-points, each k-point represents all the k-values
in the small square surrounding that point, because in reciprocal space all k-points are equally allowed.
Depending upon where the k-point lies, it may represent only a fraction of the little square.  For
instance, each k-point of Figure 4.6b lying on the Γ→M line represents half the little square.  In
general, it is necessary to define the weight Wi of each ki points such that Wi is proportional to the
area ki represents and satisfies the normalization condition

i 1

L

=
∑ Wi = 1 (4.61)

Thus, in Figure 4.6c, the weights of the k-points (0, 0), (1/2, 0), (1/3, 0), and (1/3, 1/6) have the ratios
1/8 : 1/4 : 1/2 : 1.

When the crystal orbitals ψn(k) are generated using a set of atomic orbitals {χ1, χ2,..., χm}

per unit cell, one obtains a set of m orbital energies {e1(ki), e2(ki), ..., em(ki)} for each ki point.
Each band level en(ki) has its probability of occurrence pn(ki), which is the same as the weight Wi of

the k-point ki.  Thus, there are a set of probabilities {p1(ki), p2(ki),..., pm(ki)} to consider for each ki
point, where

pn(ki) = Wi (n = 1, 2, ..., m) (4.62)

The probability pn(ki) has the meaning that a doubly occupied crystal orbital ψn(ki) accounts for
2pn(ki) electrons.  If electronic band structure calculations are performed for the L points of a set {k1,

k2, ..., kL}, one obtains m x L band levels and their probabilities

{e1(ki), e2(ki),...,em(ki)} (i = 1, 2, ..., L) (4.63)

{p1(ki), p2(ki),...,pm(ki)} (i = 1, 2, ..., L) (4.64)

The m x L band levels of Eq. 4.63 may now be rearranged in ascending order of energy.  This ordered
set of m x L levels can be simply written as

{e1, e2, ..., em, em+1, ..., e2m, ..., emxL} (4.65)

The m x L probabilities of Eq. 4.64 can also be arranged as in the orbital energy sequence of Eq. 4.63
to give the ordered set of m x L probabilities, which may be written as

{p1, p2, ..., pm, pm+1, ..., p2m, ..., pmxL} (4.66)

As already mentioned, each doubly occupied level ei of Eq. 4.65 accounts for 2pi electrons.
Therefore for any number of electrons N per unit cell, one can find the energy levels emax and emax+1
satisfying the constraint

i 1

max

=
∑ 2pi ≤ N < 

i 1

max+1

=
∑ 2pi (4.67)
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In considering the Fermi level ef, it is important to consider the emax and emax+1 values for the case
when N refers to the total number of electrons, Nelec, in a unit cell.  Then emax and emax+1 are the
highest occupied and lowest unoccupied levels, respectively.  Thus, for normal semiconductors and
insulators, the energy difference emax+1 - emax is the band gap.  For normal metals, this energy
difference should be zero in principle, but may be nonzero in practice because a set of finite k-points is
used in sampling the FPZ.  In a special case like a single graphite sheet, the Fermi surface consists of
only one k-point, i.e., K = (1/3, 1/3).  The FPZ of the 2D graphite lattice is given by a rhombus so that
when this FPZ is sampled by a set of evenly distributed k-points, the point (1/3, 1/3) is not included in
the set.  Therefore, the energy difference emax+1 - emax will be nonzero.  In this case, the true Fermi
level can be approximated by ef = (emax+1 + emax)/2 if the k-point set employed did not include the K
point.  To be precise, one should carry out calculations for the K point.  

For convenience, the highest occupied level of a given system determined as described above is
defined as the Fermi level ef of the system.  However, it should be recalled that the double occupancy
of each band level is assumed in obtaining this level.  Therefore, this level is not relevant for discussing
the highest occupied level of magnetic insulators, for which one must consider the single occupancy of

all band levels for some bands (see Section 4.6.1).2

4.5.3 Density of states

When the electronic band structure of a solid is calculated for a fine mesh of k-points covering
the FPZ, one obtains a set of m×L discrete energy levels and their probabilities of occurrence (Eqs.
4.65 and 4.66).  Then, as described in Section 4.2.4, the DOS n(e) at a given energy e can be obtained
by summing contributions from the Gaussian functions gi(e) that represent for all the m×L levels,

n(e) = 
i 1=

×

∑
m L

2gi(e) (4.68)

where the factor of 2 is introduced because each level can be occupied by two electrons.  (We neglect
the possibility of electron localization, which in a one-electron band picture is represented by singly
filled band levels.  See Section 4.6.1.)  The smoothing parameter δ of gi(e) (see Eq. 4.27) is chosen
according to the size of the k-points mesh.  The accuracy of n(e) is improved by using a small value of
δ with a large set of k-points.

n(e) means the probability of the energy level at e, so that it is nonzero within the allowed energy
region of a band and vanishes in the forbidden energy region.  An important DOS value in describing
the physical properties of metals is the DOS value at the Fermi level, i.e., n(ef).  In terms of n(e), the
electronic energy Eelec of a system is written as

Eelec = 

  − ∞

ef

∫ n(e) e de (4.69)

A band of nonmagnetic systems can accommodate two electrons per unit cell so the DOS values of a
given band i, ni(e), satisfy the normalization condition

  
ni

− ∞

∞

∫ (e)de = 2 (4.70)

Suppose that we calculate the gross population qµ(ei) of an atomic orbital χµ as well as the

overlap population pµν(ei) between two atomic orbitals χµ and χν for each individual level ei
assuming that it is doubly occupied.  Then the PDOS qµ(e) of orbital χµ, the PDOS QA(e) of atom A,
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the PDOP pµν(e) for orbitals χµ and χν, and the PDOP pAB(e) for the bond between atoms A and B

are defined as described in Section 4.2.4.  The PDOP plots for solids are known as crystal orbital

overlap population (COOP) curves.4

Electronic band structure calculations for a solid generate a large number (i.e., m×L) of levels.
Thus as in the case for large, complex molecules, it is practical to use appropriate DOS, PDOS and
DOP plots in describing electronic structures of solids.

4.6 Partially filled bands

From the viewpoint of one-electron band theory, a system with partially filled band(s) is
metallic.  However, it should be recalled that such a system can be a magnetic insulator due to electron-
electron repulsion.  Normal metals and magnetic insulators are similar in that they both possess
partially filled energy levels.  Whether a system with partially filled band(s) is metallic or magnetic

insulating depends on how the partially filled bands are occupied.2

4.6.1 Normal metallic versus magnetic insulating states of a partially filled band

To examine what controls the relative energies of metallic and magnetic insulating states of a
partially filled band system, we consider a hypothetical 1D chain with one orbital χi and one electron

on each lattice site i (Figure 4.7a).2,12  The energy factors governing the relative energies of the two
states of this chain are similar to those that govern the relative energies of the high-spin and low-spin
states of a molecular dimer (Figure 4.8a).  The molecular orbitals of the dimer can be approximated by

  

ψ1 = χ1 + χ2

2

ψ 2 = χ1 − χ2

2

(4.71)

Figure 4.7.  (a) 1D lattice with one orbital and one electron per site.  (b)
Magnetic insulating state of a 1D chain with one electron per site, in
which an electron is localized at each site.  (c) Intermediate stage of the
electron transport process in a 1D chain with one electron per site.
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if the overlap integral <χ1|χ2> is neglected.  Then, the energies of these orbitals are given by e1 = α +

β and e2 = α - β, where β = <χ1|Heff|χ2>.  With two electrons, one may construct the low-spin state
(Figure 4.8b) or the high-spin state (Figure 4.8c).  In a one-electron picture, in which electron-electron
repulsion is neglected, the low-spin state is always more stable than the high-spin state.  This is not
necessarily the case when electron-electron repulsion is taken into consideration.

Figure 4.8.  (a) Dimer with one orbital and one electron per site.  (b)
Electron configuration in the low-spin state of the dimer.  (c) Electron
configuration in the high-spin state.  (d) On-site electron density
distribution in the low-spin state.  (e) On-site electron density
distribution in the high-spin state.

To simplify our discussion, we neglect all repulsion integrals but the on-site repulsion U =
(χ1χ1|χ1χ1) = (χ2χ2|χ2χ2).  Then, in any electronic state, an atomic site with the up-spin and down-

spin electron densities n↑ and n↓, respectively, contributes the amount of repulsion given by n↑n↓U.
The on-site charge densities associated with the low-spin (Figure 4.8b) and high-spin (Figure 4.8c)
states are depicted in Figures 4.8d and 4.8e, respectively.  In terms of the on-site repulsion, the low-
spin state is less stable than the high-spin state by U/2.  In terms of the orbital energies, however, the
low-spin state is more stable than the high-spin state by 2|β|, which is equal to W/2, where W is the
bandwidth of the corresponding 1D chain (Figure 4.7a).  Consequently, the high-spin state becomes

more stable if U > W.2
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Figure 4.9.  Arrangements of localized spins in a 1D chain with one
electron per site: (a) Ferromagnetic arrangement, (b) antiferromagnetic
arrangement.  (c) No long-range order.

Consider the 1D lattice in Figure 4.7a.  When U >> W, favorable electronic states are those in
which each site has one electron with either up or down spin (Figure 4.7b).  All these states are
insulating in nature, because electron hopping from one site to another leads to a situation in which two
electrons reside on a single site thereby causing on-site repulsion (Figure 4.7c).  Such insulating states

resulting from partially filled bands are referred to as Mott-Hubbard localized states.12  Figures 4.9a
and 4.9b represent ferromagnetic and antiferromagnetic arrangements of spins, respectively.  These two
states have a long range order.  The spin arrangement of Figure 4.9c is an example with no long-range
order.  Within the one-electron band picture, the ferromagnetic state Figure 4.9a is represented by the
electronic structure that results when all the band levels are singly occupied with an identical spin, as
depicted in Figure 4.10a, which is a solid state analog of the dimer high-spin state Figure 4.8c.  If one
neglects electron-electron repulsion terms except for the on-site and the nearest-neighbor intersite
Coulomb repulsions, the electronic energies of the three states Figures 4.9a-4.9c are identical.
Consequently, the high-spin band filling scheme Figure 4.10a represents any localized electronic state
arising from a half-filled band.

Figure 4.10.  Band orbital pictures of the (a) magnetic insulating state
and (b) normal metallic state of a system with half filled band.

It is difficult to describe the energies for the low-lying excited states of a Mott-Hubbard
localized state (e.g., the energy differences between the states, Figures 4.9a-4.9c) within a band
electronic structure theory, because this theory is based upon the assumption that electrons are
delocalized throughout the lattice.  Localized electronic systems are typically examined in terms of
model Hamiltonians (e.g., spin and Hubbard Hamiltonians) designed to study their low-lying excited
states.

For a half-filled metallic system, the low-spin band filling in Figure 4.10b is appropriate when U
<< W.  This is a solid state analog of the dimer low-spin state in Figure 4.8b.  The energies for the
low-lying excited states of the metallic state Figure 4.10b are well described by the band orbital energy
differences in the vicinity of the Fermi level.

For a solid in which U ≈ W, it is difficult to predict whether a metallic or a magnetic insulating
state is more stable.  In certain cases the total energy is lowered by introducing spin polarization on
each lattice site (i.e., n↑ > n↓ or n↑ < nØ), because it reduces the contribution of on-site repulsion to
the total energy.  This leads to a magnetic metallic state, which has weakly localized electrons.  It is
important to consider how spin polarization can be introduced in a band picture.  Since each band level
can have up-spin and down-spin electrons, one can consider that each band is made up of two
subbands, i.e., one band for up-spin electrons, and the other band for down-spin electrons.  For
example, Figure 4.11a depicts a normal metallic state in this picture, where ef0 refers to the Fermi
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level of the normal metallic state.  Spin polarization can be introduced into a normal metallic state by

shifting the up-spin band with respect to the down-spin band.13  For simplicity, it may be assumed that
the spatial orbital character of these subbands is essentially unaffected by the spin polarization.  With
respect to the normal metallic state (Figure 4.11a), one can obtain more up-spin electrons by raising
the Fermi level to ef0 + ∆↑, and less down-spin electrons by lowering the Fermi level to ef0 - ∆↓
(Figure 4.11b).  When the up-spin and down-spin bands are shifted so that the ef0 + ∆↑ and ef0 - ∆↓
levels become identical (i.e., adjusted to the new Fermi level ef), a spin-polarized state results (Figure

4.11c).  The electronic state of Figure 4.11c represents a magnetic metallic state.13  In this picture, the
case for U >> W is represented by the state in which the up-spin and down-spin bands are completely
separated (Figure 4.11d).  Thus the up-spin is completely filled while the down-spin band is completely
empty thereby representing a magnetic insulating state.  The states represented by Figures 4.10a and
4.11d are equivalent.

Figure 4.11.  Up-spin and down-spin subband representations of the
various states of a system with a half-filled band.  (a) Normal metallic
state.  (b) Electron redistribution in the up-spin and down-spin
subbands.  (c) Spin polarized state.  (d) Magnetic insulating state.

4.6.2 Normal metallic states and Fermi surfaces
For the metallic state of a partially filled band, wave vectors in a certain region of the FPZ lead

to occupied band levels (i.e., levels below the Fermi level), and wave vectors in the remaining region of
the FPZ lead to unoccupied band levels (i.e., levels above the Fermi level).  For simplicity, wave
vectors leading to occupied and unoccupied levels of a partially filled band are referred to as occupied
and unoccupied wave vectors, respectively.  All wave vectors of the FPZ are equally probable, so that
the occupancy of a partially filled band is equal to the ratio of the area of the occupied wave vectors to
that of the FPZ.  The Fermi surface of a partially filled band is the boundary surface separating the
occupied wave vectors from the unoccupied wave vectors, i.e., the surface made up of the Fermi wave
vectors kf.
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Figure 4.12.  (a) FPZ of a non-orthorhombic 2D lattice.  (b) Dispersion
relation of a band across the Fermi level.  (c) Schematic illustration of
how to determine a Fermi surface.

We examine how to calculate a Fermi surface first by considering the normal metallic state of a
2D system as an example.  To make our discussion general, this 2D system will be assumed to be non-
orthorhombic, so that the FPZ are given by a parallelogram (Figure 4.12a).  Suppose the n-th band is

partially filled.  With a set of k-points {k1, k2, ..., kL} covering one half the FPZ (indicated by shading
in Figure 4.12a), the Fermi level ef can be determined.  Given the n-th band energies en(ki) calculated
for this set of k-points, one can generate an analytical expression of en(k) as a function of k by a 2D

cubic spline fitting procedure.14  For this fitting purpose the FPZ is more useful than the FBZ because
the former provides a much simpler set of evenly distributed k-points.  Once an analytical expression of
en(k) and the Fermi level ef are obtained, it is easy to find the Fermi vector kf, for which en(kf) = ef,
along any wave vector direction desired (see Figure 4.12b).  To present a Fermi surface as a contour in
the FPZ, one needs to find a large number of kf values.  This is achieved by examining the dispersion
relations of the band en(k) along several sets of parallel wave vector lines dividing the FPZ.  This is
illustrated with two sets of parallel wave vector lines in Figure 4.12c, where the kf points found are
represented by heavy dots.  If one applies a finer mesh of parallel wave vector lines, more kf points are
found.  Then, the Fermi surface is given by the contour line connecting those kf points as shown by the
solid line in Figure 4.12c.

The above discussion can be easily extended for a 3D system.  The 3D FPZ of a 3D crystal can
be sliced by a set of cross sections parallel to the a*b*-, b*c*- or a*c*-plane.  For each cross-section
plane, 2D Fermi surface contours can be calculated as described above.  When these contours on all
cross-section planes are collected, one obtains the Fermi surfaces of the 3D system.

A Fermi surface is made up of the Fermi wave vectors kf, and the crystal momentum h kf
shows the direction of electron movement on the Fermi surface.  In other words, there exists a nonzero
carrier density for electrical conduction along the direction perpendicular to the Fermi surface.
Therefore, in a representation of a Fermi surface using wave vectors in all three directions, a 1D metal
has two Fermi surface sheets perpendicular to the direction of its electrical conduction, a 2D metal has
a cylinder-like Fermi surface running along the direction of the least electrical conductivity, and a 3D
metal has a completely closed Fermi surface.

4.6.3 Effective mass
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The energy of a free electron ε(k) is given by

ε(k) = 
( )hk 2

e2m
(4.72)

where me is the mass of an electron.  Given the energy of a partially band as ei(k), it is convenient to
describe its behavior around the Fermi level in terms of a parabolic relationship

ei(k) = 
( )hk

*

2

2m
(4.73)

Here the effective mass m* is used to describe any deviation of the band ei(k) from the free electron

behavior ε(k).  In general, dispersion relations of a band depend on the directions of wave vectors,
and so do the effective mass.  For a Fermi surface in a 2D FPZ or for a Fermi surface on a cross-section

plane of a 3D FPZ, it is convenient to consider the average effective mass defined by 15

m* = 
h2

2

d

dπ
A

e
(4.74)

where A refers to the area of either the occupied or the unoccupied wave vector region of the 2D FPZ
or the cross-section plane of the 3D FPZ.

4.7 States derived from a metallic state 5,16

4.7.1 Fermi surface nesting

Fermi surfaces are important in explaining the electronic instabilities of partially filled band
systems.  When a piece of a Fermi surface can be translated by a vector q and superimposed on another
piece of the Fermi surface, the Fermi surface is said to be nested by the vector q.  Since the Fermi
surface of Figure 4.13a consists of two parallel lines, it is nested by an infinite number of wave vectors,
two examples of which are shown in Figure 4.13a.  For the discussion of Fermi surface nesting, it is
important to consider Fermi surfaces in the entire reciprocal space, which is achieved by repeating the
Fermi surface pattern of the FPZ in reciprocal space.

Figure 4.13.  (a) Nesting vectors of a 1D Fermi surface.  (b) Filled and
empty wave vectors of the FPZ given by a 1D Fermi surface, where the
filled region is indicated by shading.
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4.7.2 Orbital mixing and new states

In discussing metal-insulator and metal-superconductor transitions, it is convenient to describe
the insulating and the superconducting states as a consequence of perturbation on the metallic state.  A
metallic state predicted by one-electron band theory (i.e., a normal metallic state) is not stable when its
Fermi surface is nested, and becomes susceptible to a metal-insulator transition under a suitable
perturbation.  We now examine the nature of the nonmetallic states that are derived from a normal
metallic state upon mixing its occupied and unoccupied band levels.  In Figure 4.13b, the occupied
wave vector region is indicated by shading, and the vector q is one of many possible nesting vectors.
To simplify our notations, the occupied and unoccupied wave vectors are denoted by k and k’,
respectively.  Each unit cell will be assumed to contain one atomic orbital χ, so the Bloch orbitals φ
defined in Eq. 4.50 are the crystal orbitals as well.  Suppose we choose the k and k’ values to satisfy
the relationship

q = k - k’ (4.75)

The orbitals φ(k) and φ(k’) are eigenfunctions of the unperturbed Hamiltonian Ho.  If a certain

perturbation H’ is introduced, these  orbitals may not be eigenfunctions of Ho + H’ anymore, so that
they interact to give modified orbitals ψ(k) and ψ(k’)

ψ(k) ∝ φ(k) + γ φ(k’)
ψ(k’) ∝ -γ φ(k) + φ(k’) (4.76)

where γ is a mixing coefficient.  These orbital mixings are possible when the interaction matrix
elements <φ(k)|H’|φ(k’)> are nonzero.  If the k and k’ values are chosen from the Fermi surface, then
φ(k) and φ(k’) are degenerate.  In other cases, φ(k) and φ(k’) are nondegenerate, but the energy
difference between φ(k) and φ(k’) becomes smaller as k approaches the Fermi surface.

The electron density distributions associated with ψ(k) and ψ(k’) are given by

ψ(k)ψ*(k) ∝ φ(k)φ*(k) + γ2 φ(k’)φ*(k’) + ∆ρ
ψ(k’)ψ*(k’) ∝ γ2 φ(k)φ*(k) + φ(k’)φ*(k’) - ∆ρ (4.77)

where

∆ρ = γ [φ*(k)φ(k’) + φ(k)φ*(k’)] (4.78)

If we expand φ*(k)φ(k’) and φ(k)φ*(k’) using Eq. 4.50 and keep only the diagonal terms χ(r-R)χ*(r-
R), it can be shown that

∆ρ ∝ cos ) ( ) ( )
R

*q R r R r R∑ ⋅ − −( χ χ  (4.79)

Therefore, with respect to φ(k) or φ(k’), ψ(k) and ψ(k’) each have density wave character whose

periodicity in real space is governed by the term cos(q.R).  According to Eqs. 4.77 and 4.79, ψ(k)
leads to density accumulation where ψ(k’) has density depletion, and vice versa.  If the density
distribution arising from φ(k) or φ(k’) is represented by a straight line, then the density accumulation
and depletion associated with φ(k) and φ(k’) occur as a wave form as shown in Figure 4.14, where
shaded and unshaded half waves represent density accumulation and depletion, respectively.

Suppose that the orbital mixings defined in Eq. 4.79 are carried out for all occupied k of the FPZ
under the condition q = k - k’ to obtain sets of modified orbitals {ψ(k)} and {ψ(k’)} from sets of
unmodified orbitals {φ(k)} and {φ(k’)}.  The normal metallic state is one in which all the φ(k) orbitals
are doubly occupied.  Then as illustrated in Figure 4.15a for a 1D chain, each site has no magnetic
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moment and has an identical amount of charge.  A charge density wave (CDW) state occurs when the
ψ(k) orbitals are doubly occupied.  As illustrated in Figure 4.15b for a 1D chain, a CDW state has no
local magnetic moment but charge densities on atomic sites vary in a wave manner.  When ψ(k) and
ψ(k’) are each singly occupied by up-spin and down-spin electrons, respectively, a spin density wave
(SDW) state results.  As shown in Figure 4.15c for 1D chain, the SDW state has a local magnetic
moment at atomic sites but the total charge density on each atomic site is identical.

Figure 4.14.  Density wave formation that results when a filled orbital
φ(k) interacts with the empty orbital φ(k’)s related by the nesting vector
q = k’ - k.

Figure 4.15.  Electron distributions at the lattice sites of a 1D chain
with one electron per site in various electronic states.  (a) Metallic state,
(b) CDW state, (c) SDW state.

Figure 4.16.  Effect of a CDW formation on the dispersion relation and
the energy band of a 1D system with a half filled.

Unless φ(k) and φ(k’) are degenerate, which occurs when k is on the Fermi surface, the mixing
of the unoccupied orbital φ(k’) into the occupied level φ(k) has an energy-raising effect, although it
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can be more than compensated by the energy lowering associated with the interaction energy
<φ(k)|H’|φ(k’)>.  Thus the orbital mixing between φ(k) and φ(k’) becomes more favorable as the
energy difference between them decreases, i.e., when the k value approaches the Fermi surface.  As
illustrated in Figure 4.16 for a partially filled 1D band system, the orbital mixing between φ(k) and
φ(k’) changes their energies in the vicinity of the Fermi level most significantly and opens a band gap at
the Fermi level.  In Figure 4.16 the band gap is given by 2∆, where ∆ = <φ(k)|H’|φ(k’)> evaluated for
k = kf.  When there exists a Fermi surface nesting, the favorable orbital mixing can be achieved for a
large region of k-values in the vicinity of the Fermi surface.  This explains why a metal with nested
Fermi surface is susceptible toward a phase transition that leads to orbital mixing between the levels
around the Fermi level thereby creating a band gap.

Figure 4.17.  Schematic diagrams illustrating the effect of a CDW
formation on the Fermi surface in case of an incomplete Fermi surface
nesting.

Figure 4.18.  Resistivity-versus-temperature plot showing a metal-to-
semiconductor-to-metal phase transition.

By definition, Fermi surfaces disappear when a band gap opens at the Fermi level.  So far in our
discussion, a complete Fermi surface nesting (e.g., Figure 4.13a) has been assumed.  In such a case, all
the Fermi surface is removed by an appropriate orbital mixing.  In certain cases, a Fermi surface
nesting may be incomplete, as illustrated in Figure 4.17a, if some parts of the Fermi surface have
different curvatures.  In this case, only the nested portion of the surface is removed by orbital mixing as
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illustrated in Figures 4.17b and 4.17c, so that the unnested portion is left as small Fermi surface
pockets as shown in Figure 4.17d, which represents a metallic state.  Compared with Figure 4.17a,
Figure 4.17d has a smaller Fermi surface area and hence a smaller number of carriers (i.e., those
electrons at the Fermi level).  Suppose that a phase transition induced by temperature lowering gives
rise to the Fermi surface change from Figure 4.17a to Figure 4.17d.  Such a phase transition is likely to
exhibit a resistivity-versus-temperature plot as shown in Figure 4.18.  However, if a Fermi surface
nesting is complete, Figure 4.1c will be observed.

4.7.3 CDW instability

So far we have implicitly assumed that a band level below ef is completely filled (i.e., occupancy
of 1), and that above ef is completely empty (i.e., occupancy of 0).  This picture is valid for all levels
when T = 0, but only for the levels lying outside the vicinity of the Fermi level (e.g., e < ef - 4kBT and
e > ef + 4kBT, where kB is the Boltzmann constant) when T > 0.  For the levels lying close to the
Fermi level (e.g., ef - 4kBT < e < ef + 4kBT), whose orbital mixing plays a crucial role in lowering the
energy of a metal with nested Fermi surface, thereby leading to a metal-insulator transition, their orbital
occupancy f(e) at nonzero temperature is given by the Fermi-Dirac distribution function

f(e)
1

1 exp
e e

k T
f

B

=
+

−







(4.80)

Figure 4.19.  Schematic diagrams illustrating the effect of temperature
on the CDW formation in individual chains of a 1D metallic system.
(a) T > T1D, (b) T1D > T > Tx, (c) Tc < T < Tx, and (d) T < Tc.

Thus, f(e) < 1 for e < ef, and f(e) > 0 for e > ef.  For example, in the vicinity of the Fermi level of

Figure 4.13b, the occupancy of φ(k) is less than 1, and that of φ(k’) is larger than 0 (at T > 0).
Consequently, the energy gain resulting from the orbital mixing between φ(k) and φ(k’) is maximum
at T = 0 and decreases as T is raised.  Thus, only when T is lowered below a certain temperature does
the energy gain associated with the orbital mixing become substantial enough to cause a metal-insulator
transition.
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Metal-insulator transition arising from a CDW instability is not abrupt, but typically undergoes a

series of steps.17  This process can be illustrated by considering a 1D metal as composed of weakly
interacting chains.  At a high temperature, each chain has no tendency for CDW formation, so all
chains have uniform density distributions, as illustrated by straight lines in Figure 4.19a.  Below a
certain temperature T1D, each chain has a tendency for CDW formation.  As depicted in Figure 4.19b,
a CDW is formed and destroyed dynamically at many parts of each chain, and CDW formation in one
chain is independent of those in other chains.  The average length of a CDW segment (i.e., coherence
length) is ξa.  At a certain temperature Tx below T1D, CDW segments among different chains begin

to order along the interchain direction as shown in Figure 4.19c, where ξb is the coherence length
along the interchain direction.  Finally, at a certain temperature Tc below Tx, CDW formation in each
chain is complete and CDW’s among different chains are ordered, as shown in Figure 4.19d.
Therefore, a long range order sets in.  The coherence lengths ξa and ξb increase gradually upon
lowering the temperature as the extents of long-range order along the intra- and interchain directions
increase.  These coherence lengths become infinite when a long-range order is complete in both
directions.

Figure 4.20.  Schematic diagrams illustrating the diffraction patterns
that correspond to the various temperature regimes of Figures 3.19a-d:
(a) T > T1D, (b) T1D > T > Tx, (c) Tc < T < Tx, and (d) T < Tc.

The temperature dependence of CDW formation in real space, discussed above, is deduced

typically from single-crystal X-ray diffraction measurements.17  At T > T1D, the diffraction pattern of
a 1D metal shows only Bragg peaks, as shown in Figure 4.20a.  At Tx < T < T1D, the diffraction
pattern shows diffuse lines (or sheets in 3D representation) perpendicular to the ka-direction, which are
located at ±qa (i.e., ±2kf) from the rows of the Bragg peaks, as shown in Figure 4.20b.  The thickness

of the diffuse line is given by ξa-1.  At Tc < T < Tx, the diffuse lines are transformed into diffuse spots
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(or rods in 3D representation) centered at (2kf, qb) and its equivalent positions, as shown in Figure

4.20c.  The thicknesses of a diffuse spot along the ka- and kb-directions are given by ξa-1 and ξb-1,
respectively.  Below T < Tc, a long-range order sets in so that the diffuse spots are converted into
superlattice spots, as shown in Figure 4.20d.  The diffuse spot thicknesses along the intra- and
interchain directions are inversely proportional to the coherence lengths xa and ξb, respectively.
Thus the diffuse spots become smaller as the extent of long-range order along the two directions
increases, and eventually become superlattice spots after a long-range order sets in along both
directions.

The perturbation causing the CDW state associated with a nesting vector q is a lattice vibration
with the wave vector q.  When the CDW state is formed, the lattice distorts so that the lattice vibration
of wave vector q is softened.  Consequently, the vibrational energy band shows a frequency lowering in

the vicinity of the nesting value q as shown in Figure 4.21, which is known as the Kohn anomaly.18

For a Fermi surface consisting of parallel lines (in 2D representation) as in Figure 4.13b, an infinite
number of nesting vectors q are present.  However, only one specific q value is likely to be adopted by
the partially-filled band system because distortion induces lattice strain.  Thus the chosen q value is the
one that leads to an optimum energy lowering for the system by balancing the electronic energy gain
and the lattice strain.  When CDW vectors q are integer fractions (i.e., 1/2, 1/3, 1/4, etc.) of reciprocal
lattice vectors, the CDW’s are said to be commensurate.  Otherwise, they are called incommensurate.

The perturbation causing the CDW state associated with a nesting vector q is a lattice vibration
with the wave vector q.  When the CDW state is formed, the lattice distorts so that the lattice vibration
of wave vector q is softened.  Consequently, the vibrational energy band shows a frequency lowering in

the vicinity of the nesting value q as shown in Figure 4.21, which is known as the Kohn anomaly.18

For a Fermi surface consisting of parallel lines (in 2D representation) as in Figure 4.13b, an infinite
number of nesting vectors q are present.  However, only one specific q value is likely to be adopted by
the partially-filled band system because distortion induces lattice strain.  Thus the chosen q value is the
one that leads to an optimum energy lowering for the system by balancing the electronic energy gain
and the lattice strain.  When CDW vectors q are integer fractions (i.e., 1/2, 1/3, 1/4, etc.) of reciprocal
lattice vectors, the CDW’s are said to be commensurate.  Otherwise, they are called incommensurate.

Figure 4.21.  Kohn anomaly associated the CDW formation associated
with the nesting vector q.

4.7.4 Superconducting state 19

When the temperature is lowered, a metal may become susceptible to another type of electronic
instability, i.e., formation of a superconducting state.  For a metal to become superconducting, it should
avoid the electronic instability toward a metal-insulator transition leading to a CDW or an SDW state.
In general, the Fermi surface of a 1D metal is well-nested, so a 1D metal rarely undergoes a metal-
superconductor transition.  From the viewpoint of one-electron band theory, a superconducting state
also involves orbital mixing among band levels above and below the Fermi level.  However, the way
this orbital mixing comes about is quite different from that discussed for CDW and SDW

states.16c,19c
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Charge carriers of a superconducting state are not individual electrons as in a normal metallic
state, but pairs of electrons (called Cooper pairs) having opposite momenta (i.e., opposite wave
vectors).  Thus, Cooper pairs are described by product functions φ(k)φ(-k) and φ(k’)φ(-k’), where k

and k’ refer to occupied and unoccupied wave vectors of a normal metallic state, respectively.16c,19c

The energy lowering that brings about superconductivity is induced by the interaction of an occupied
pair function φ(k)φ(-k) with an unoccupied pair function φ(k’)φ(-k’), i.e., <φ(k)φ(-k)|H’|φ(k’)φ(-k’)>,
where the perturbation H’ causing this mixing is electron-phonon interaction in traditional

superconductors described by the BCS theory.19  As a consequence of the interaction between the pair
functions, the character of the unoccupied pair function is mixed into that of the occupied pair function.
In this indirect way, a superconducting state incorporates unoccupied orbital character into the
occupied orbital character.  Interactions between the pair functions φ(k)φ(-k) and φ(k’)φ(-k’) introduce
an energy gap at the Fermi level, as do the interactions between φ(k) and φ(k’) in forming CDW and
SDW states.  It should be recalled that charge carriers of a superconducting state are Cooper pairs.  A
superconducting energy gap prevents Cooper pairs from breaking up when there is no excitation energy
greater than the gap.  The latter is a few multiples of kBTc at absolute zero temperature, where Tc is
the superconducting transition temperature, and gradually decreases to zero at Tc.

Figure 4.22.  Schematic diagram showing the formation of a Cooper
pair (i.e., the charge carrier of a superconducting state) as a result of
electron-phonon coupling.

For traditional superconductors, Cooper pair formation is induced by electron-phonon

interaction:19  As depicted in Figure 4.22, a moving electron causes a slight, momentary lattice
deformation around itself.  The deformation affects the motion of a second electron (moving in the
opposite direction) in the wake of the first in such a way that, effectively, the two electrons move as an
entity as if bound together by an attractive force.  The extent of electron-phonon coupling is measured
by the electron-phonon coupling constant λ.  The superconducting transition temperature Tc and the

coupling constant λ are governed by the expression 19b

Tc ≈ 
  

Θ
1. 45

 exp

  
−

1. 04(1 + λ )
λ + µ*(1 + 0. 5λ )

 
  

 
  (4.81)

where Θ is the Debye temperature and µ* is the effective Coulomb pseudopotential, which is of the
order of 0.1.  Among the factors affecting the magnitude of Tc in Eq. 4.81, the most important one is
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the electron-phonon coupling constant λ.  In general, Tc increases with increasing λ.  For a lattice
with atoms of mass M and with a vibrational band conducive for electron-phonon coupling, the

constant λ is given by 19b

λ = 

  

n(ef) I2

M ω 2 (4.82)

where <I2> is the square of the electron-phonon interaction element averaged over the Fermi surface,

and <ω2> is the square of the phonon frequency averaged over the vibrational band.  The M<ω2>
term has the dimension of a force constant, so a large λ results when the lattice has a low-frequency
phonon spectrum (i.e., soft phonons arising from vibrations with shallow potential wells).  Therefore,
when the lattice is soft toward the low-frequency phonons crucial for superconductivity, the electron-

phonon coupling constant λ is large, thereby raising the Tc.20

Certainly, for a superconducting state to occur, the energy increase associated with the
introduction of unoccupied orbital character should be smaller than the energy gain resulting from
interaction among Cooper pair functions.  Depending upon the nature and strength of the perturbations
causing orbital mixing, a normal metallic state with nested Fermi surface may lead to a superconducting
state when the temperature is lowered if CDW or SDW formation associated with the nesting can be
prevented.  Such a case occurs when the interaction matrix elements <φ(k)|H’|φ(k’)> responsible for
CDW or SDW formation are small compared with the interaction matrix elements <φ(k)φ(-
k)|H’|φ(k’)φ(-k’)> that cause a superconducting state.  When the relative stabilities of CDW, SDW, and
superconducting states are similar, preference of one state over the other is delicately balanced by a

change in temperature and pressure.21
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